229,608 research outputs found

    The Morphogenesis Of Evolutionary Developmental Biology

    Get PDF
    The early studies of evolutionary developmental biology (Evo-Devo) come from several sources. Tributaries flowing into Evo-Devo came from such disciplines as embryology, developmental genetics, evolutionary biology, ecology, paleontology, systematics, medical embryology and mathematical modeling. This essay will trace one of the major pathways, that from evolutionary embryology to Evo-Devo and it will show the interactions of this pathway with two other sources of Evo-Devo: ecological developmental biology and medical developmental biology. Together, these three fields are forming a more inclusive evolutionary developmental biology that is revitalizing and providing answers to old and important questions involving the formation of biodiversity on Earth. The phenotype of Evo-Devo is limited by internal constraints on what could be known given the methods and equipment of the time and it has been framed by external factors that include both academic and global politics

    On the methodology of feeding ecology in fish

    Get PDF
    Feeding ecology explains predator’s preference to some preys over others in their habitat and their competitions thereof. The subject, as a functional and applied biology, is highly neglected, and in case of fish, a uniform and consistent methodology is absent. The currently practiced methods are largely centred on mathematical indices and highly erroneous because of non-uniform outcomes. Therefore, it requires a relook into the subject to elucidate functional contributions and to make it more comparable and comprehensive science. In this article, approachable methodological strategies have been forwarded in three hierarchical steps, namely, food occurrence, feeding biology and interpretative ecology. All these steps involve wide ranges of techniques, within the scope of ecology but not limited to, and traverse from narrative to functional evolutionary ecology. The first step is an assumption-observation practice to assess food of fish, followed by feeding biology that links morphological, histological, cytological, bacteriological or enzymological correlations to preferred food in the environment. Interpretative ecology is the higher level of analysis in which the outcomes are tested and discussed against evolutionary theories. A description of possible pedagogics on the methods of feeding ecological studies has also been forwarded

    Socio-eco-evolutionary dynamics in cities

    Get PDF
    Cities are uniquely complex systems regulated by interactions and feedbacks between nature and human society. Characteristics of human society-including culture, economics, technology and politics-underlie social patterns and activity, creating a heterogeneous environment that can influence and be influenced by both ecological and evolutionary processes. Increasing research on urban ecology and evolutionary biology has coincided with growing interest in eco-evolutionary dynamics, which encompasses the interactions and reciprocal feedbacks between evolution and ecology. Research on both urban evolutionary biology and eco-evolutionary dynamics frequently focuses on contemporary evolution of species that have potentially substantial ecological-and even social-significance. Still, little work fully integrates urban evolutionary biology and eco-evolutionary dynamics, and rarely do researchers in either of these fields fully consider the role of human social patterns and processes. Because cities are fundamentally regulated by human activities, are inherently interconnected and are frequently undergoing social and economic transformation, they represent an opportunity for ecologists and evolutionary biologists to study urban "socio-eco-evolutionary dynamics." Through this new framework, we encourage researchers of urban ecology and evolution to fully integrate human social drivers and feedbacks to increase understanding and conservation of ecosystems, their functions and their contributions to people within and outside cities

    Indigenous Knowledge, Ecology, and Evolutionary Biology

    Get PDF

    Measuring telomere length and telomere dynamics in evolutionary biology and ecology

    Get PDF
    Telomeres play a fundamental role in the protection of chromosomal DNA and in the regulation of cellular senescence. Recent work in human epidemiology and evolutionary ecology suggests adult telomere length (TL) may reflect past physiological stress and predict subsequent morbidity and mortality, independent of chronological age. Several different methods have been developed to measure TL, each offering its own technical challenges. The aim of this review is to provide an overview of the advantages and drawbacks of each method for researchers, with a particular focus on issues that are likely to face ecologists and evolutionary biologists collecting samples in the field or in organisms that may never have been studied in this context before. We discuss the key issues to consider and wherever possible try to provide current consensus view regarding best practice with regard to sample collection and storage, DNA extraction and storage, and the five main methods currently available to measure TL. Decisions regarding which tissues to sample, how to store them, how to extract DNA, and which TL measurement method to use cannot be prescribed, and are dependent on the biological question addressed and the constraints imposed by the study system. What is essential for future studies of telomere dynamics in evolution and ecology is that researchers publish full details of their methods and the quality control thresholds they employ

    Natural history of Arabidopsis thaliana and oomycete symbioses

    Get PDF
    Molecular ecology of plant–microbe interactions has immediate significance for filling a gap in knowledge between the laboratory discipline of molecular biology and the largely theoretical discipline of evolutionary ecology. Somewhere in between lies conservation biology, aimed at protection of habitats and the diversity of species housed within them. A seemingly insignificant wildflower called Arabidopsis thaliana has an important contribution to make in this endeavour. It has already transformed botanical research with deepening understanding of molecular processes within the species and across the Plant Kingdom; and has begun to revolutionize plant breeding by providing an invaluable catalogue of gene sequences that can be used to design the most precise molecular markers attainable for marker-assisted selection of valued traits. This review describes how A. thaliana and two of its natural biotrophic parasites could be seminal as a model for exploring the biogeography and molecular ecology of plant–microbe interactions, and specifically, for testing hypotheses proposed from the geographic mosaic theory of co-evolution

    The conceptual structure of evolutionary biology: A framework from phenotypic plasticity

    Get PDF
    In this review, I approach the role of phenotypic plasticity as a key aspect of the conceptual framework of evolutionary biology. The concept of phenotypic plasticity is related to other relevant concepts of contemporary research in evolutionary biology, such as assimilation, genetic accommodation and canalization, evolutionary robustness, evolvability, evolutionary capacitance and niche construction. Although not always adaptive, phenotypic plasticity can promote the integration of these concepts to represent some of the dynamics of evolution, which can be visualized through the use of a conceptual map. Although the use of conceptual maps is common in areas of knowledge such as psychology and education, their application in evolutionary biology can lead to a better understanding of the processes and conceptual interactions of the complex dynamics of evolution. The conceptual map I present here includes environmental variability and variation, phenotypic plasticity and natural selection as key concepts in evolutionary biology. The evolution of phenotypic plasticity is important to ecology at all levels of organization, from morphological, physiological and behavioral adaptations that influence the distribution and abundance of populations to the structuring of assemblages and communities and the flow of energy through trophic levels. Consequently, phenotypic plasticity is important for maintaining ecological processes and interactions that influence the complexity of biological diversity. In addition, because it is a typical occurrence and manifests itself through environmental variation in conditions and resources, plasticity must be taken into account in the development of management and conservation strategies at local and global levels

    The contribution of statistical physics to evolutionary biology

    Full text link
    Evolutionary biology shares many concepts with statistical physics: both deal with populations, whether of molecules or organisms, and both seek to simplify evolution in very many dimensions. Often, methodologies have undergone parallel and independent development, as with stochastic methods in population genetics. We discuss aspects of population genetics that have embraced methods from physics: amongst others, non-equilibrium statistical mechanics, travelling waves, and Monte-Carlo methods have been used to study polygenic evolution, rates of adaptation, and range expansions. These applications indicate that evolutionary biology can further benefit from interactions with other areas of statistical physics, for example, by following the distribution of paths taken by a population through time.Comment: 18 pages, 3 figures, glossary. Accepted in Trend in Ecology and Evolution (to appear in print in August 2011

    An open future for ecological and evolutionary data?

    Get PDF
    As part of BioMed Central’s open science mission, we are pleased to announce that two of our journals have integrated with the open data repository Dryad. Authors submitting their research to either BMC Ecology or BMC Evolutionary Biology will now have the opportunity to deposit their data directly into the Dryad archive and will receive a permanent, citable link to their dataset. Although this does not affect any of our current data deposition policies at these journals, we hope to encourage a more widespread adoption of open data sharing in the fields of ecology and evolutionary biology by facilitating this process for our authors. We also take this opportunity to discuss some of the wider issues that may concern researchers when making their data openly available. Although we offer a number of positive examples from different fields of biology, we also recognise that reticence to data sharing still exists, and that change must be driven from within research communities in order to create future science that is fit for purpose in the digital age. This editorial was published jointly in both BMC Ecology and BMC Evolutionary Biology

    Evaluation of biomass and trophic position for Lake Huron zooplankton

    Full text link
    Honors (Bachelor's)Ecology and Evolutionary Biology (EEB)University of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/120589/1/gleasmic.pd
    corecore